Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Oscar Castillo, Antonio Luque,* Noelia De la Pinta and Pascual Román

Departamento de Química Inorgánica, Facultad de Ciencias, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain

Correspondence e-mail: qipluara@lg.ehu.es

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.034$
$w R$ factor $=0.079$
Data-to-parameter ratio $=12.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[bis(2-pyridyl)amine- $\left.N, N^{\prime}\right]$ (nitrato- O, O^{\prime})cobalt(II) nitrate

The crystal structure of the title compound, $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)\right.$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)_{2}\right] \mathrm{NO}_{3}$, consists of mononuclear cations and uncoordinated nitrate anions held together by means of an extensive three-dimensional network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The $\mathrm{Co}^{\mathrm{II}}$ centre has a distorted octahedral geometry, coordinated with two O atoms of a bidentate nitrate ligand and with four pyridine N atoms of two bis(2-pyridyl)amine ligands in a trans-trans mode.

Comment

During our studies of first-row transition metal complexes with N -donor aromatic ligands (Castillo et al., 2001; Castillo et al., 2000), we have obtained the compound bis[bis(2-pyridyl)amine- $\left.N, N^{\prime}\right]\left(\right.$ nitrato- $\left.O, O^{\prime}\right)$ cobalt(II) nitrate, (I).

(I)

Ligands containing aromatic nitrogen heterocycles play an important role in the molecular self-assembling process that leads to supramolecular architectures (Jones, 1998). The crystal structure of (I) comprises discrete $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)\right.$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)_{2}\right]^{+}$cations and $\mathrm{NO}_{3}{ }^{-}$anions. The Co ${ }^{\text {II }}$ centre is sixcoordinated by four pyridine N atoms of two bis(2-pyridyl)amine moieties and by two O atoms of a bidentate nitrate anion, as shown in Fig. 1. The bidentate bis(2-pyridyl)amine ligands chelate the $\mathrm{Co}^{\mathrm{II}}$ atom to form two six-membered coordination rings. The $\mathrm{Co}-\mathrm{N}$ bond distances range from 1.935 (2) to 1.947 (2) A. The pyridine rings in the same ligand are in the normal trans-trans mode (Du et al., 2001) and the dihedral angles are 27.7 (1) and $37.4(1)^{\circ}$, respectively. The nitrate ligand is coordinated with two essentially equivalent Co-O bond distances, 1.907 (2) and 1.909 (2) Å. The main distortion of the octahedral geometry is due to the small $\mathrm{O}-$ $\mathrm{Co}-\mathrm{O}$ bite angle [69.15 (9) ${ }^{\circ}$] of the bidentate nitrate anion. The $\mathrm{N}-\mathrm{O}$ bond distance involving the uncoordinated O atom of the nitrato ligand is significantly shorter than those for the coordinated O atoms, but is similar to those of the nitrate anion.

Received 19 July 2001
Accepted 1 August 2001
Online 10 August 2001

In the crystal structure of (I), the cations and nitrate anions are held together by means of an extensive network of $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2).

Experimental

An aqueous solution (30 ml) of bis(2-pyridyl)amine (0.340 g , 2.0 mmol) was added slowly to an aqueous solution (30 ml) of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.290 \mathrm{~g}, 1.0 \mathrm{mmol})$ with vigorous stirring. The resulting solution was filtered off to remove impurities and then allowed to stand at room temperature. After two weeks, red crystals were harvested by slow evaporation of the solvent. Crystals were found to be stable to air and X-ray exposure.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)_{2}\right] \mathrm{NO}_{3}$
$M_{r}=525.35$
Monoclinic, $P 2_{1} / n$
$a=17.191$ (3) A
$b=7.308$ (1) A
$c=17.843$ (5) \AA
$\beta=104.94$ (3) ${ }^{\circ}$
$V=2165.9(8) \AA^{3}$
$Z=4$
$D_{x}=1.611 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.62$ (1) $\mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in a mixture of carbon tetrachloride and bromoform
Mo $K \alpha$ radiation
Cell parameters from 14084
reflections
$\theta=2.5-25.8^{\circ}$
$\mu=0.85 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Irregular, red
$0.42 \times 0.20 \times 0.08 \mathrm{~mm}$

Data collection

Stoe IPDS diffractometer
Area-detector (φ) scans
Absorption correction: numerical
(Stoe \& Cie, 1998)
$T_{\text {min }}=0.815, T_{\text {max }}=0.934$
14084 measured reflections
4037 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.079$
$S=1.04$
4037 reflections
324 parameters

> 2598 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.048$
> $\theta_{\max }=25.8^{\circ}$
> $h=-21 \rightarrow 20$
> $k=-8 \rightarrow 8$
> $l=-21 \rightarrow 21$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0787 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.52 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

Co1-O1	$1.909(2)$	O1-N1	$1.335(4)$
Co1-O2	$1.907(2)$	O2-N1	$1.337(4)$
Co1-N11	$1.935(2)$	O3-N1	$1.216(4)$
Co1-N19	$1.947(2)$	O4-N2	$1.246(4)$
Co1-N21	$1.935(2)$	O5-N2	$1.215(4)$
Co1-N29	$1.935(2)$	$\mathrm{O} 6-\mathrm{N} 2$	$1.213(4)$
O1-Co1-O2	$69.15(9)$	$\mathrm{N} 11-\mathrm{Co} 1-\mathrm{N} 29$	$174.66(9)$
O1-Co1-N11	$88.41(9)$	$\mathrm{N} 19-\mathrm{Co} 1-\mathrm{N} 21$	$94.67(9)$
O1-Co1-N19	$165.50(9)$	$\mathrm{N} 19-\mathrm{Co} 1-\mathrm{N} 29$	$94.94(9)$
O1-Co1-N21	$99.81(9)$	$\mathrm{N} 21-\mathrm{Co} 1-\mathrm{N} 29$	$88.51(9)$
O1-Co1-N29	$86.31(9)$	$\mathrm{O} 1-\mathrm{N} 1-\mathrm{O} 2$	$108.3(3)$
O2-Co1-N11	$88.49(9)$	$\mathrm{O} 1-\mathrm{N} 1-\mathrm{O} 3$	$126.1(3)$
O2-Co1-N19	$96.38(9)$	$\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 3$	$125.6(3)$
O2-Co1-N21	$168.95(9)$	$\mathrm{O} 4-\mathrm{N} 2-\mathrm{O}$	$120.7(3)$
O2-Co1-N29	$90.37(9)$	$\mathrm{O} 4-\mathrm{N} 2-\mathrm{O}$	$119.7(3)$
N11-Co1-N19	$90.37(9)$	$\mathrm{O} 5-\mathrm{N} 2-\mathrm{O}$	$119.6(3)$
N11-Co1-N21	$91.61(9)$		

Figure 1
The asymmetric unit of (I) with 50% probability displacements ellipsoids. H atoms have been omitted for clarity.

Figure 2
Packing diagram of (I). Dotted lines show hydrogen bonds. H atoms have been omitted for clarity.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 17-\mathrm{H} 17 \cdots \mathrm{O} 2^{\text {i }}$	0.78 (3)	2.15 (3)	2.884 (3)	157 (3)
$\mathrm{N} 27-\mathrm{H} 27 \cdots \mathrm{O} 4^{\text {ii }}$	0.84 (3)	2.00 (3)	2.842 (4)	179 (3)
C13-H13 . O $1^{\text {iii }}$	0.93	2.57	3.400 (4)	149
C14-H14 . . $\mathrm{O}^{\text {iv }}$	0.93	2.57	3.404 (5)	148
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{O}^{\text {v }}$	0.93	2.35	3.224 (4)	157
C110-H110 $\cdots \mathrm{O}^{\text {vi }}$	0.93	2.51	3.418 (4)	167
C113-H113 . $\mathrm{O}{ }^{\text {i }}$	0.93	2.44	3.343 (4)	163
C211-H211 $\cdots \mathrm{O}^{\text {vii }}$	0.93	2.40	3.324 (4)	171

Symmetry codes: (i) $-x, 2-y,-z$; (ii) $x, 1+y, z$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iv)
$\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (v) $x, y-1, z$; (vi) $1-x, 1-y,-z$; (vii) $x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}$.
H atoms bonded to C atoms were kept fixed at calculated positions with $U_{\text {iso }} 20 \%$ larger than $U_{\text {eq }}$ for the atoms to which they are
attached. H atoms bonded to N atoms were located in difference Fourier maps and refined isotropically.

Data collection: IPDS Software (Stoe \& Cie, 1998); cell refinement: IPDS Software; data reduction: IPDS Software; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the Universidad del Pais Vasco/ Euskal Herriko Universitatea (project UPV/EHU 169.310-EA-8057/2000) and a predoctoral fellowship (MEC-AP 18598566).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Castillo, O., Luque, A. \& Román, P. (2001). J. Mol. Struct. 570, 181-188.
Castillo, O., Luque, A., Sertucha, J., Román, P. \& Lloret, F. (2000). Inorg. Chem. 39, 6142-6144.
Du, M., Guo, Y., Leng, X. \& Bu, X. (2001). Acta Cryst. E57, m97-m99.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Jones, C. J. (1998). Chem. Soc. Rev. 27, 289-299.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany. Stoe \& Cie (1998). IPDS Software. Stoe \& Cie, Darmstadt, Germany.

